

## Improving ML models for flood estimation during Hurricane Ian

Maryam Pakdehi Ebrahim Ahmadisharaf Florida State University







#### Physicallybased



#### Morphologicbased



(Ming et al., 2020; Sridhar et al., 2021; Zahura et al., 2020; Kalyanapu et al., 2011; Towe et al., 2020; Fernández-Pato et al., 2016; Costabile et al., 2017; Costabile et al., 2017; Kalyanapu et al., 2011; Ming et al., 2020; Sridhar et al., 2021; Zahura et al., 2020; Hou et al., 2020; Mark et al., 2004; Zhang & Guo, 2014; Towe et al., 2020)

(Bates, 2022; Bates et al., 2005)

Data-driven



#### Flood models



(Khosravi et al., 2018; Guo et al., 2021; Zahura et al., 2020; Löwe et al., 2021; Mishra et al., 2022; Mosavi et al., 2018)



## 

### Fast and accurate model for flood depth estimations

Merz et al., 2010; Chang et al. 2022; Elkhrachy 2022; Löwe et al. 2021; Guo et al. 2021; Hosseiny et al. 2020; Zahura et al. 2020; Khosravi et al., 2018; Rahmati et al., 2016; Rezaie et al., 2022; Youssef et al., 2022

#### **Flood Event: Hurricane Ian**







Study Area







Newfoundland















#### Features

























Flow Accumulation



Features

**Flow Direction** 



#### Meteorologic









WATER INSTITUTE SYMPOSIUM

#### Topographic











## Land surface



#### Features



#### Soil



#### Hydrodynamic







WATER INSTITUTE SYMPOSIUM

| Category               | Feature                              | Source                  | Spatial resolution | <b>Temporal</b><br>resolution |
|------------------------|--------------------------------------|-------------------------|--------------------|-------------------------------|
| ~                      | Distance to rivers                   |                         |                    |                               |
| Geographic<br>location | Distance from storm track            | NHDPlus                 |                    | —                             |
|                        | Distance from the coastline          |                         | —                  |                               |
|                        | Height above nearest drainage (HAND) | NED                     | 10 m               | —                             |
| Hydrologic             | Drainage area                        |                         | —                  | —                             |
|                        | Flow accumulation                    |                         | —                  |                               |
|                        | Topographic wetness index (TWI)      |                         | —                  |                               |
| Mataanalaria           | Rainfall depth                       | NCEL                    |                    | Dailer                        |
| Meteorologic           | Wind speed                           | INCEI                   |                    | Dany                          |
|                        | Elevation                            |                         |                    |                               |
| Topographic            | Ground slope                         | NI CD                   | 10 m               |                               |
|                        | Slope aspect invariability (ASPVAR)  | NLCD                    |                    |                               |
|                        | Curvature                            |                         |                    | _                             |
| Land surface           | Imperviousness                       | NLCD                    | 30 m               |                               |
| Soil                   | Antecedent soil moisture             | ERA5                    |                    | Daily                         |
| Hydrodynamic           | Storm surge                          | NOAA Tides and Currents |                    | Sub-hourly                    |



WATER INSTITUTE

| ourvature   |           |           |            |       |       |            |          |       |            |            |           |
|-------------|-----------|-----------|------------|-------|-------|------------|----------|-------|------------|------------|-----------|
| Elevation   | -0.07     |           |            |       |       |            |          |       |            |            |           |
| Storm_Surg  | 0.08      | -0.66     |            |       |       |            |          |       |            |            |           |
| Wind        | 0.08      | -0.48     | 0.95       |       |       |            |          |       |            |            |           |
| Rain<br>-   | -0.08     | 0.90      | -0.73      | -0.56 |       |            |          |       |            |            |           |
| Soil_Moist  | -0.06     | 0.18      | -0.13      | -0.06 | 0.20  |            |          |       |            |            |           |
| Flow_Acc    | -0.03     | 0.04      | -0.06      | -0.06 | 0.03  | 0.03       |          |       |            |            |           |
| Slope -     | -0.10     | 0.02      | -0.03      | -0.04 | -0.03 | 0.08       | -0.03    |       |            |            |           |
| Dist_river  | 0.04      | 0.11      | 0.16       | 0.16  | 0.14  | -0.14      | -0.07    | -0.19 |            |            |           |
| Dist_track  | -0.03     | 0.01      | -0.66      | -0.76 | 0.19  | 0.02       | -0.01    | -0.10 | -0.19      |            |           |
| Mean_Gage_  | -0.10     | 0.66      | -0.48      | -0.37 | 0.43  | 0.15       | 0.11     | 0.12  | -0.27      | 0.09       |           |
| uncertainty | 0.01      | -0.06     | 0.15       | 0.15  | -0.07 | -0.04      | -0.03    | -0.03 | 0.07       | -0.11      | -0.11     |
| Dis_Sea     | -0.13     | 0.82      | -0.64      | -0.49 | 0.72  | 0.47       | 0.09     | 0.20  | -0.15      | 0.01       | 0.63      |
| StreamOrde  | -0.09     | 0.23      | -0.45      | -0.44 | 0.17  | 0.27       | 0.26     | 0.31  | -0.38      | 0.22       | 0.40      |
| Flood       | -0.02     | -0.20     | 0.27       | 0.24  | -0.16 | -0.36      | -0.01    | 0.05  | -0.03      | -0.23      | -0.17     |
|             | curvature | Elevation | Storm Surg | Wind  | Rain  | Soil Moist | Flow Acc | Slope | Dist river | Dist track | Mean Gage |

- 1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

-1.00

-0.08

-0.15

-0.02

uncertainty

0.48

-0.32

Dis Sea

-0.10

StreamOrde

Flood

#### Feature Selection

17

#### **Feature Selection**

- Mean Gauge Height
- Distance to storm track

• Rain

- Distance to levee
- Distance to structures
  - Soil Moisture
  - Distance to river
    - Stream Order
  - Distance to Sea
    - Wind

**PCA** 

- Elevation
- Storm Surge
  - Curvature
    - Slope
    - HAND
- Flow Accumulation



#### Model 1 : Rivers



#### **Observed Flood Data**











## Model 2 : Over land (floodplains)





#### Flood depth data

| Amount of vertical uncertainty | Uncertainty   |  |  |
|--------------------------------|---------------|--|--|
| Within $\pm 0.05$ foot.        | Excellent (E) |  |  |
| Within $\pm 0.10$ foot.        | Good (G)      |  |  |
| Within $\pm 0.20$ foot.        | Fair (F)      |  |  |
| Within $\pm 0.40$ foot.        | Poor (P)      |  |  |
| More than $\pm 0.40$ foot.     | Very poor (V) |  |  |





WATER INSTITUTE SYMPOSIUM

#### **Customized loss function**

Standard loss function

R-squared for training dataset: 0.21 R-squared for test dataset: 0.05

**Customized loss function** 

Train Custom R-squared: 0.87 Test Custom R-squared: 0.48





Just HWMs

Train Custom R-squared: 0.87 Test Custom R-squared: 0.48

HWMs + Stream gauges

Train Custom R-squared: 0.94 Test Custom R-squared: 0.91

## HWMs

Uncertainty
HAND
Distance from river

# Stream gauges

Mean gauge height
Levee



WATER INSTITUTE SYMPOSIUM









#### **Future Directions**

- Transferability
  - Transfer learning
  - Add new features
- Uncertainty
  - Investigate
  - Integrate the uncertainty quantification techniques





#### Thank you!

mp22bo@fsu.edu eahmadisharaf@eng.famu.fsu.edu

